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This study discusses the evolution of long gravity waves on shear flows. Although the
paper is concerned mainly with finite amplitude neutrally stable flows which contain
a critical level, a new representation is given for the unstable mode solutions of the
linearized equations. From these solutions it appears that focusing instabilities,
usually associated with nonlinear viscous effects, can occur even in linear inviscid
theory.

For finite amplitude disturbances the analysis is restricted to polygonal shear pro-
files and only the neutrally stable solutions are considered. The theory is presented in
detail for a simple two-layer profile which can support a critical mode. At small Froude
numbers the critical mode is essentially an internal wave. This limiting solution also
describes critical flows between parallel rigid boundaries when there is no body force.

The finite amplitude solutions are generalizations of the classical simple wave solu-
tions for unsheared flows. As in the classical case, those waves can break but it is found
that the conditions under which they break can be markedly different for shear flows.
Calculations for the particle trajectories are also presented. These trajectories differ
from the usual Kelvin’s cat’s eye pattern in that they are, in general, no longer closed.

Finally, it is observed that there are many other barotropic flows for which the gov-
erning equations can be reduced to a form equivalent to the shallow water equations
discussed here. A list of such flows is given.

1. INTRODUCTION

This paper describes the propagation of large amplitude shallow-water gravity waves over a
horizontal bed into a region where the flow is sheared in a vertical direction. It is mainly con-
cerned with neutrally stable waves for which the flow contains a critical level where the horizontal
component of fluid velocity # and the wave speed ¢ coincide. These waves contain trapped par-
ticles whose trajectories are generalizations of the famous Kelvin’s cat’s eyes. Now though,
because of the effect of non-linearity, these trajectories do not usually form closed orbits but
distort as the particles are convected with the wave. The waves may be of infinite horizontal
extent or they may be separated by sharp fronts from regions of steady parallel flow where the
fluid is sheared in a vertical, but not in a horizontal, direction.

Although the terminology used in this paper is that associated with shallow-water waves, the
results obtained are directly applicable to many other barotropic flows that involve the inter-
action of long waves with ambient flows that are sheared in a direction transverse to the direction
of wave propagation: the equations governing many of these flows can be transformed into a form
that is almost identical to those governing shallow-water waves. A list of such flows, together with
the appropriate transformations, is given in §10. Included are flows produced by atmospheric
gravity waves in a barotropic (well mixed) atmosphere as well as flows of compressible and
incompressible fluids down ducts or down tubes with flexible walls.

The equations governing the propagation of shallow-water gravity waves on a sheared flow are
stated in §2. These equations have solutions describing steady parallel shear flows for which the
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LARGE AMPLITUDE WAVES WITH AMBIENT FLOWS 191

horizontal component of the fluid velocity u, = Uy(y), is an arbitrary function of the vertical
distance measure y but is independent of x, the distance measure in the horizontal direction. For
these flows the vertical component of fluid velocity v = 0 while the fluid depth H is constant.
When the governing equations are formally linearized about these steady flow solutions the
resulting equations have two types of solution for which the dependence of the flow variables on y
separates from their dependence on (x, ¢). For the first kind, which describe neutrally stable
disturbances, H (x, t) satisfies the one-dimensional progressing wave equation

0H oH

= — e 1.1
Tz =0 (1.1)
for some constant ¢,. For the second kind of solution, which describes unstable waves, H satisfies
the equation RH 2l
"a"ﬁ“gzw: 0 where o =x—c¢yt (1.2)

and (cq;, ¢y) are constants. In general, there are two different kinds of unstable disturbances
governed by (1.2): those that become unbounded at all x as £ — oo or those that focus and become
unbounded at a definite horizontal position at a definite time. Examples of both kinds of instability
are given in §2.3 when the initial disturbance contains infinite energy, as it does when H is
periodic in x at ¢ = 0, and when the initial disturbance contains finite energy. (These instabilities
are illustrated in figures 1a, b, §2.) Focusing instabilities caused by nonlinear and viscous effects
have been discussed previously by Hocking, Stewartson & Stuart (1972) and by Davey, Hocking
& Stewartson (1974). However, the instabilities discussed by these authors have a different
structure from those discussed here: in their analysis the wave envelope is singular, in ours it is the
wave profile that is singular.

For finite amplitude waves the dependence of the flow variables on y cannot usually be com-
puted independently of their dependence on (, t), as it can for the small amplitude waves dis-
cussed in § 2. However, there is a class of flows for which the dependence of the flow variables on y
is immediately apparent and only their dependence on (¥, £) must be calculated. These flows are
characterized by the fact that the shear profile at some vertical cross-section, which is traversed by
all particles in the flow, is always of the polygonal form shown in figure 2. It then follows that the
flow consists of layers, separated by fluid interfaces, in each of which # is of the form

u=wy+i(x,t), (1.3)

where #(x, t) and the constant w, which is the hydraulic flow approximation to the horizontal
component of vorticity, differ from layer to layer. In this paper, in order to analyse the broad
features of shear flows containing a critical level, we consider such layered flows. Although it
might be thought that thisinvestigation would yield anomalous results, as it automatically assumes

that 0%u[0y® = 0 at the critical level, (1.4)

in a subsequent paper we show that during the passage of a wave the shear profile always adjusts
so that (1.4) holds. Most of the major flow features associated with the presence of a critical level
are correctly predicted by the polygonal model. There is, however, one important exception. In
the small amplitude limit when (1.4) does not hold ahead of the wave there is an amplification to
the perturbation of u at the critical level which is proportional to

0%y [ (Qu\®
<~ (5)° o

24-2
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192 E. VARLEY, J. Y. KAZAKIA anxp P. A. BLYTHE

where the derivatives are computed at the critical level just ahead of the wave. This phenomenon
is not predicted when the shear profile is assumed to be polygonal for then x = 0.

The full nonlinear equations governing H (x,t) and #(x, ¢) are derived in §3.1. In § 3.2 we show
how the general solution to the linearized equations can be represented as a sum of all the possible
neutrally stable and unstable mode solutions. These solutions can satisfy prescribed initial con-
ditions on the .

Thelarge amplitude generalizations of the neutrally stable waves are presented in §4. These are
described by simple wave solutions to the equations governing H (x, t) and the @(x, ¢). For these
solutions # = #(H), so that (1.3) reads

u=uowy+u(H), (1.6)
where H (x, ) satisfies the nonlinear progressing wave equation
o0H 0H
= To(H) 5o = 0. (1.7)

It is pointed out in §4.2 that solutions of the form (1.6) and (1.7) are special examples of a more
general class of exact solutions to the nonlinear shallow-water equations for which H satisfies
(1.7) while « and v can be written in the similarity form

u=U(H,y) and v= (0H[ox) V(H,y). (1.8)

These solutions, which describe the interaction of neutrally stable waves with any ambient shear
profile, were first obtained by Blythe, Kazakia & Varley (1971, 1972) in their study of flows that
do not contain a critical level. In a subsequent paper the representation (1.8) will be used to
describe the effect of non-zero « on the flow near a critical level.

In this paper we discuss large amplitude neutrally stable modes only when the shear profile is
polygonal. Generally, there is more than one such mode for which this profile takes a specified
form at some vertical cross-section where H = H. Each such mode can be characterized by the
value of ¢, = ¢(H,) which is the velocity with which the depth H = H, would propagate in a
disturbance caused by exciting just that mode. When the polygonal profile consists of z layers,
with different values of @ in adjacent layers, all possible values of ¢, are roots of an (n + 1) degree
polynomial whose coefficients are determined by the geometry of the shear profile at H = H,,.
There are as many neutrally stable modes as there are real roots of this polynomial. The complex
roots correspond to unstable modes. Unfortunately, any finite amplitude disturbance cannot be
regarded as a composite of these modes, as can a small amplitude disturbance, since these modes
usually interact. Consequently, an analysis of the flow produced by a single finite amplitude mode
is only of immediate physical relevance when it can be argued that this mode contains most of the
energy of the disturbance. This occurs, for example, when the flow is stable and the disturbance is
initially limited to a finite interval of the x-axis. Althogh the different neutrally stable modes
initially interact, they will ultimately separate since they are moving at different speeds. At some
later time the flow consists of isolated modes separated by regions of uniform parallel shear flow.

As an illustration of the general analysis, the case of a simple two layered shear profile that can
support a critical mode (see figure 3a) is discussed at length in §§5-9. This flow is always stable
(there is no unstable mode) and can support three neutrally stable modes: one for which the flow
is wholly subcritical, one for which the flow is wholly supercritical, and one for which the flow
contains both subcritical and supercritical flow regions. For the critical mode the level y = y.(H),
at which u = ¢(H), always lies in the lower (sheared) layer. The flow is subcritical below, and
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LARGE AMPLITUDE WAVES WITH AMBIENT FLOWS 193

supercritical above, this level. An analysis of all three families of waves is given in appendix A. In
the main body of the paper we discuss in detail the limiting case of internal waves which occur
when WH|g -0, (1.9)
In this limit the speeds of the subcritical and supercritical modes relative to the flow are infinitely
large compared with the speed of the critical mode, and it is shown in §6.3 that the most general
flow possible can be regarded as that due to a critical mode on which there is superimposed a time
varying, but spatially uniform, parallel flow.

Subject to (1.9), simple limiting expressions for U(H,y), V(H,y), ¢(H) and y.(H) are derived
in §5.2. It is shown that during the passage of any critical mode the variation in the height of the
free surface is negligible compared with the variations in y;(H), the height of the fluid interface
separating the sheared and unsheared layers. In fact, during the passage of a wave, this interface,
and the critical level, can travel from the lower to the upper boundary of the flow region with
only a second-order change in the level of the free surface. In this sense the critical modes represent
internal waves. This is emphasized in § 6, where it is shown that the limiting forms of «(x, %, t) and
v(x,y, t) are exact solutions of the equations governing hydraulic flows between two rigid parallel
boundaries. These latter flows are discussed briefly in §6 where it is shown that any neutrally
stable mode must contain a critical level.

It is convenient to discuss the flow in terms of the variation in ground pressure p,. In §5 it is
shown that any decrease in p, always causes y. and y; to increase. If Hy; denotes the maximum
depth, a fall of 4pw?H%; in p, can drive both these levels from y = 0 to y = Hy. Thus, since a
wave always breaks when the critical level reaches either the upper or the lower boundary of the
flow region, the maximum range of variation of p, for which the present theory is valid is 1 pw?H%;.

For gravity waves on an unsheared flow ¢ always increases as p, increases. A novel feature of the
waves described in §§5-9 is that ¢ is not always an increasing function of p, (see figure 6). If py
denotes the pressure at which y. = 0, when

0< (u—po) < chspotfll, 0<yo <y and 2150 (1.10)
0
while when
d
18sPWHY < (pu—po) < fepw?Hyy, §Hy < ye < Hy and azc; <O0. (1.11)

Since p, satisfies equation (1.7), conditions (1.10) and (1.11) imply that large pressure gradients
(which produce large vertical currents) either form in that part of the wave where p, lies in the
range (1.10) and is increasing at any fixed x during the passage of the wave or where p, lies in the
range (1.11) and is decreasing. The distortion of a typical wave which contains regions where both
conditions (1.10) and (1.11) hold is discussed in §8 and illustrated in figure 15.

For neutrally stable waves it is possible to calculate the variation in the vertical height of any
particle as a function of the ground pressure immediately below it independently of how p, varies
with (x, ¢): the images of particle trajectories in the (y, p,) plane are determined by the shear
profile and are independent of the wave profile. The flow pattern for waves containing a critical
level is considerably more complex than that for waves where the flow is wholly subcritical or
wholly supercritical. For these latter flows particles either enter the wave at its front and, after
completely traversing the wave, exit at its back, or enter the wave at the back and exit at its
front. By contrast, in a wave containing a critical level there are usually three kinds of particles:
those that enter the wave at its front or back and completely traverse it; those that enter the wave
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at its front or back but are turned before they can fully traverse the wave to exit at the same side
they entered but at a different height; and, finally, there are trapped particles that move up and
down, and backward and forwards, but never leave the wave. The trajectories of these trapped
particles are generalizations of Kelvin’s cat’s eyes. In § 7, we obtain simple expressions, which are
valid in the limit (1.9), relating the variations in y and p, at all three types of particles.

The actual trajectories of particles in the (x, ) plane do, of course, depend on py(x, ). Since this
function satisfies an equation of the form (1.7), it is determined once p,(x, 0) is specified. In §8,
subject to (1.9), we obtain expressions for all particle trajectories, together with expressions for
the travel times of all particles along them, in terms of p,(#, 0). In particular, we show that when
b is less inside the wave than outside, the wave contains trapped particles. Relative to the wave-
front, any such particle oscillates backward and forward between equal pressure levels. Since
these pressure levels propagate with the same constant velocity they remain a fixed distance apart.
Also, the extreme vertical levels reached by any trapped particle and the time it takes the particle
to traverse the distance between its extreme horizontal positions remains unchanged as the
particle oscillates. However, although the overall dimensions of a particle’s orbit remain un-
changed, the orbits do not usually form closed curves as seen by an observer moving with the
front since the horizontal positions at which a particle reaches its extreme positions move
relative to the front. In fact, as the wave steepens the orbits also steepen until their slopes become
unbounded as the wave breaks.

2. FORMULATION
2.1. Linear theory
As an introduction to this study we consider a plane shallow-water gravity wave propagating
over a horitonzal bed in a direction of increasing distance measure x. In the wave the horizontal

component of fluid velocity u(x, y, ¢) is related to the vertical component v(x, y, ) and fluid depth
H(x,t) by the hydraulic flow, or long wave, equations

ou Ou Ou OH

—a7+u5€+vé7j+g—a; =0 (2.1)

and %g+g—; = 0. (2.2)
These are to be solved subject to the conditions that

v=0 on y=0 (2.3)

and v = 0H[0t+u0H[0x on the free surface y = H(x,1). (2.4)

The pressure in the fluid b =pa+pg(H—-y), (2.5)

where p, is the constant pressure on the free surface and p is the constant density of the fluid.
Equations (2.1)—(2.4) have trivial solutions describing steady parallel shear flows for which

H = constant, = Hysay, while [u,v] = [U,(y),0], (2.6)

where Uy(y) is arbitrary. When equations (2.1)—(2.4) are formally linearized about the solutions
(2.6) the resulting equations can be written

Ou ou  dU, oH
é—t'-l- an+—@v+g—a; =0 (2.7)
and Qg_i__a_v = 0. (2.8)
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LARGE AMPLITUDE WAVES WITH AMBIENT FLOWS 195

These are to be solved subject to the conditions that
v=0 on y=0 (2.9)

and aH+U0 aH

on y=H, (2.10)
2.2 Neutrally stable small amplitude waves

There are two kinds of solutions to equations (2.7)-(2.10) that describe progressing waves.
For the first kind we can write

oH
u=U(y) +Ui(y) (H=H,) and v=T(y) 5, (2.11)
where H (x, ¢) satisfies the progressing wave equation
0H 0H
o tag =0 (2.12)
for some real constant ¢,. Vy(y) is determined from the equation
dVy, duy,
(Up—c¢ )dy d_jV"=g’ (2.13)
which must be solved subject to the conditions that
V=0 on y=0 and Vy=Uy—¢, on y=0H, (2.14)
When (2.13) is differentiated with respect to y it follows that Vj satisfies the low-frequency
Rayleigh equation av, d2U,
(U= Go= g2 = (2.15)

which occurs in studies of hydrodynamic stability (see, for example, Stuart 1963).
When there is no critical level at which Uy(y) = ¢, (2.13) and the first of conditions (2.14) imply

that u d

7 = — 9y

Vo =2l CO)J‘n (ZA=TAER

The second of conditions (2.14) then implies that ¢, must be determined from the relation (Burns

(2.16)

1953) o dy
— =1, 2.17
gfo (Uo—¢)* ( )
_dl B 1, 44, __d_y__
Also, U, = ——@ = g[(U o)+ @ Jo Tzc? ] (2.18)

The waves described by (2.11), (2.12), (2.16) and (2.18) are all neutrally stable disturbances in
the sense that during their passage the total variations in  and 0H/0x, and hence in # and v at any
fixed y, are identical at all horizontal stations. This property for H and 0H/[0x follows directly
from (2.12); for u and v it follows from conditions (2.11) which state that z only depends on (x, £)
through its dependence on H while v only depends on (x, ¢) through its dependence on 0H/0x.

2.3. Unstable small amplitude waves

For certain forms of the shear profile, Uy(y), there is a second class of solutions to equations
(2.7)~(2.10) that describe unstable progressing waves. For these solutions we can write

u = Up(y) + Un(y) [H (%, t) = Hy] + Usa(y) L(%, ). (2.19)
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It then follows from (2.8) and (2.9) that v is of the form
o0H oL

v = To(s) o + a8, (2.20)
When the expressions (2.19) and (2.20) are inserted in (2.7) it follows that H(x,¢) and L(x,?)
satisfy the equations OH oH oL

i +€01a = —coz’a;,
(2.21)
oL oL oH

o Tlng, = Gy
for some real constants ¢y, and ¢y,. Also,
Ul(y) = U +ily, and  Ti(y) = Vo, +ilh, (2.22)
are still given by (2.16) and (2.18) with the complex constant
€y = Co1+ UCoo (2.23)
determined from condition (2.17). The term involving L(x, ¢) occurs in (2.19) but not in (2.11)
because an unstable mode is usually a composite of two components that are out of phase.

The determination of the conditions that Uy(y) must satisfy for (2.17) to have solutions with
¢oe # 0 is unresolved. Note, however, that the argument first put forward by Rayleigh 1880 to
show that certain shear flows are always stable when Ug(y) is of one sign for all y is not applicable
when the upper boundary of the sheared flow is a free surface. It does follow from (2.17) though
that if ¢, satisfies (2.17) so does its complex conjugate ¢,. Itis also easy to show thatif ¢y, # 0 there
is some level y = y. at which ¢;; = Uy(ye).

To analyse the unstable waves it is convenient to use ¢ and the phase variable

o =x—cyt (2.24)
as independent variables rather than ¢ and x. In terms of these variables equations (2.21) can be
written

oH oL oL 0H
—52 = _60250—6 and —67 = 6’02—67.2, (2.25)
which are in the form of Cauchy-Riemann equations. It then follows that
(H—H,) +iL = F(z2), (2.26)
where F is an analytic function of the complex variable
z = a+icyyt. (2.27)
Also, for future reference, H (e, ) satisfies the equation
02H 02H
0 +€%2a‘2‘ =0, (2.28)

which can readily be transformed into Laplace’s equation.

Although (2.11) and (2.12) can be obtained from (2.19) and (2.20) by formally setting ¢,y = 0
and L = 0, the characters of the waves described by these two sets of equations are different. To
see this note that if (e, £) are used as independent variables, (2.12) reduces to the simple condition

0H[ot = 0, (2.29)
which integrates to give

H=H,+h(ax) where h(x) =H-H, at t=0. (2.30)
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An immediate consequence of (2.30) is that any disturbance that is initially localized to the
interval —A < & < 0 is subsequently localized to the interval —A+¢y¢ < x < ¢yf. By contrast,
when H satisfies (2.28) any initially localized disturbance immediately spreads to all parts of the
x-axis.

Although there are many choices of F(z) for which A and L remain bounded at all x for all
t > 0, when F'(z) is determined so that  and L take prescribed values for all x at £ = 0 then F(z) is
usually singular for some ¢ > 0. In general, this either occurs for all x as £ 0, or at some finite
value of ¢ and x. To illustrate these two different kinds of instability note that when /(x) and
L(x, 0), = I(x) say, are analytic functions of the real variable x for al/ x, the solution to the Cauchy
initial value problem for the elliptic equation (2.25) is given by (2.26) with

F(z) = h(z) +il(2). (2.31)

The case when /(x) = 01is of special interest. Then, the first of equations (2.25) implies that con-
dition (2.29) is satisfied at £ = 0. This means that to an observer moving with the phase speed ¢y,
the wave profile is not distorting at ¢ = 0. With this choice of / it follows that

H = H,+Re[k(z)]. (2.82)

As an example of a disturbance that has an infinite amount of energy at # = 0 and which grows
to become unbounded at all points as ¢-> oo consider the classical case when

h(x) = hycos2nx/A for —oo < & < o0, (2.33)
Then, it follows from (2.32) that
H = Hy+ hycos (2n&) cosh (2nf), (2.34)
_a x—cul . Coal
where %=~= AOI and = ——)—l—‘ (2.85)

Equation (2.34) describes a wave profile which moves with speed ¢,, wtihout distorting while at
any fixed « its amplitude grows without bound as ¢—co. By contrast, as an example of a distur-
bance that has infinite energy at ¢ = 0 but which becomes unbounded at a single point at a finite

time consider h(x) = — hy tanh (x/A). (2.36)
This profile and its subsequent development are depicted in figure 14. The disturbance focuses
and becomes unstable at (&, |f|) = (0,4n). This follows from the fact that when £ is given by
(2.36) sinh 2&

H=Hy=h e eos ot (2.37)

As an example of a disturbance that has a finite amount of energy at f = 0 and takes an infinite
time to become unbounded at all # consider

h(x) = hgexp [ —x2/A%]. (2.38)
It then follows from (2.32) that

H = Hy+ hycos (2af) exp [£2— a?]. (2.39)

According to (2.39) the amplitude of the wave crest (& = 0) increases like exp [#%] while the free
surface at a constant distance |a| from the crest oscillates with a local frequency |cy2/A| and an
amplitude that also grows like exp [#2]. The corresponding changes in the wave profile are shown
in figure 15 for typical values of Z.

25 Vol. 287. A.
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Ficure 1. The changes of the wave profiles for three unstable disturbances as seen by an observer moving with
speed ¢q;. (a) A disturbance that has an infinite amount of energy at ¢ = 0 but which focuses and becomes
unbounded at a definite point at a finite time. (4) A disturbance that has a finite amount of energy at ¢ = 0
and becomes unbounded at all x as ¢ — o0. (¢) A disturbance that has a finite amount of energy at { = 0 and
becomes unbounded at the wave crest at a finite time.
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Finally, as an example of a disturbance that has a finite amount of energy at ¢ = 0 and focuses
to become unbounded at a single point take

R(x) = ho A2/(A2 4 27). (2.40)

1+
A tar+Eyr—4r

It then follows that H=Hy+h (2.41)

This expression describes a disturbance that becomes unbounded at the wave crest @ = 0 when
f = 1 (see figure 1¢). This can be seen by noting that at the wave crest & = 0 (2.41) predicts that

H = Hy+hy(1—7%)1 (2.42)
so that the amplitude of the crest is unbounded when || = 1. On the other hand when || =1
and & # 0, H = Hy+hy(4+a%)1. (2.43)

Thus, at (&, |?]) = (0, 1) H is multivalued.

The general aim of this and subsequent studies is to show how the waves described above are
modified by nonlinearity and viscous effects. In this paper we are mainly concerned with the
effect of nonlinearity on neutrally stable disturbances on shear flows that contain a critical level
where the wave velocity and the horizontal component of fluid velocity coincide. These waves
contain trapped particles whose trajectories are generalizations of the famous Kelvin’s cat’s
eyes. Now though, because of the effect of finite amplitude, these trajectories do not form closed
orbits but distort as the particles are convected with the wave.

Although the terminology used in this paper is that associated with shallow-water gravity
waves, the results obtained are directly applicable to many other hydraulic flows since the
equations governing these flows can be transformed into the set (2.1)—(2.4) by replacing g by some
function of H. This function is determined by the particular class of flows being analysed. Some of
these flows, together with the appropriate transformations, are listed in §10.

3. SHEAR FLOWS WITH PIECEWISE UNIFORM VORITICY
3.1. Governing equations

For the small amplitude waves described in § 2 the dependence of the flow variables on y can be
computed independently of their dependence on (x, ¢). Although this decomposition is not usually
possible for finite amplitude waves, there is a class of flows for which the dependence of the flow
variables on y is immediately apparent and only their dependence on (x, #) must be calculated.
These flows are'characterized by the fact that the shear profile at some vertical cross-section, which
is traversed by all particles in the flow, is always of the polygonal form shown in figure 2. It then
follows that the flow consists of layers in each of which the vertical shear gradient,

w = Ou/0y, (3.1)

is constant.  is the hydraulic flow approximation to the horizontal component of vorticity.

In this paper, in order to analyse the droad features of shear flows that contain a critical level, we
consider the somewhat idealized situation when the flow consists of z layers in each of which w is
constant. These layers are separated by fluid interfaces that may also be vortex sheets across which
the tangential component of fluid velocity is discontinuous. Although it might be thought that
such an investigation would yield anomalous results at the critical level, as it automatically

25-2
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assumes that 0%/0y? = 0 there, in a subsequent paper we show that during the passage of a large
amplitude, neutrally stable disturbance the shear profile always adjusts so that 0%z/0y% = 0 at the
critical level.

To obtain the equations governing shear flows with piecewise uniform vorticity first note that
when (2.1) is differentiated with respect to y, and (2.2) is used, it follows that w is conserved at a

particle so that Do ow odw ow
y Un
vit" Un -

U, u

F1GURE 2. The n-layered polygonal shear profile on which the general analysis is based. The jth layer in which the
uniform vorticity is o, is bounded by the curves y = y;_,(H) and y = y;(H) which are the images of particle
paths in the (y, H) plane. The depth of this layer &; = y;—y;—;.

Animmediate consequence of (3.2) is that in any region spanned by particles that have crossed an
interval of the y-axis where w = constant we can write

u=wy+i(x1?). (3.3)
It then follows from (2.2) that in this region
v = —youlox+v(xt). (3.4)
When (3.3) and (3.4) are inserted in (2.1) this implies that
ow ow _  OH
5 i ter+es, =0 (375)

Ifthe flow consists of n layers, in each of which  has a different value, the flow in each layer can be
represented by relations such as (3.3)—-(3.5) but now # and 7 differ from layer to layer. First we
derive the conditions relating these variables when both u and v are continuous throughout the
flow region and when  is nowhere zero. Then, we show how these conditions must be modified
when some of the interfaces separating the layers are vortex sheets and when = 0 in some
layers.

Let the interfacesy = y;_,(«,£) and y = y;(x, ¢) form the bottom and top of the jth layer in which
the uniform vorticity in ;; then, in the jth layer we can write # in the form (3.3) with

w=0; and T=w_;—w;y; 43 =u—w;y; (j=1,2,...,n), (3.6)

where w(x,t) =u at y=y;(x8) (j=0,1,...,n). (3.7)


http://rsta.royalsocietypublishing.org/

A

<
o
NI
o[~
ez =
@)
O
= uwv

PHILOSOPHICAL
TRANSACTIONS

/ \

r

A

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

OF

A

OF

Downloaded from rsta.royalsocietypublishing.org

LARGE AMPLITUDE WAVES WITH AMBIENT FLOWS 201

Also, v can be written in the form (3.4) with

_ o 0w .
V=Yg Tl =Ygty (J=12,...,n), (3.8)
where . v(x,t) =v at y=y;(x,t) (j=0,1,...,n). (3.9)

Since y = y;(x,t) is an interface, it also follows that
v-=lj+u~alj (j=10,1,..,n). (3.10)

When the expressions (3.6) and (3.8) for # and ¢ are inserted in (3.5) and condition (3.10) is used
it follows that u;(x, t) satisfies the equation

Ou; Ou; OH .
a—t+u,6;+g-6;—0 (j=10,1,...,n). (3.11)
Note that Yo=0 and y, =H(x1) (3.12)

and that (3.10) withj = 0 is equivalent to the boundary condition (2.3) while (3.10) withj = nis
equivalent to (2.4).

Equations (3.11) are (n + 1) relations between (n +2) unknowns. To obtain the other relation
note that (3.6) implies that the depth of the jth layer

by =y;—y;—y = 07 (u;—u;_y) (j=1,2,...,m). (3.13)

Consequently, since the total depth of the fluid layer is H, it follows that

M=

H=

It

Jj=1 J

Equations (3.11) and (3.14) form a complete set of (z +2) equations for H and (ug, uy, ..., u,) as
functions of (x, t). Once these variables have been calculated, conditions (3.13), and the fact that
Yo = 0, determine (yy, ¥y, ..., ¥»_y) and then conditions (3.10) determine (vy, v,, ..., v,).
When some of the surfaces separating the layers are vortex sheets, (#;_;, ;) in (3.6) must be
replaced by (ujt,, ;) where «} and u; denote the limiting values of u as the surface y = y; is
approached from above and below. Similarly, in (3.8) (v;_,,v,) must be replaced by (v 4, v;).
Also, condition (3.10) remains valid with (u;, v;) replaced either by (u;, v;") or by (uf,v}). It then
follows that both u;” and u; satisfy (3.11) and that (u;, #;_;) in (3.14) must be replaced by (u;, ujt ;).
When » = 0 in the jth layer, the formula (3.13) for /; does not hold. Instead, /#; must be deter-

mined from the equation
oh; 0
_‘atj-l_é; (hju;) = 0 where u; =u; . (3.15)

To obtain these two conditions note that when ; # 0 equations (3.11) imply that

0 10
il =] +5 3 [+ ) (45—, )] = O, (3.16)

or, by (3.13), that a}i"+—1- o

B 2@[(”1"‘”7’—1) hy] = 0. (3.17)
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The results (3.15) follow directly from (3.13) and (3.18) in the limit as w; — 0 keeping &; finite.
When there are several layers in which w = 0 condition (3.14) must be modified to read

H= % oj'(y—uq)+ Xk (3.18)
all layers all layers
where w0 where w=0

In what follows, to simplify the discussion, we derive results for the case in which there are no
vortex sheets and no layers in which o = 0. If necessary, the modifications that must be made
when these conditions are not satisfied are simply quoted. They can usually be obtained by simple
limiting procedures.

Itshould be noted that all of the equations derived above remain valid when gis replaced by an
arbitrary function of H. Thus, the results described in this section are immediately applicable to
the physical systems described in §10. However, since y is not usually a distance measure in a
direction transverse to the main flow, as it is for shallow-water gravity waves, the procedure de-
scribed in this section amounts to approximating the shear profile by a series of arcs whose shapes
are determined by the particular system. For example, y = ma?, for the axi-symmetric pipe flow
described in § 10.2 where a is the distance from the centre of the pipe, and the procedure is equiva-
lent to approximating the shear profile by a series of parabolic arcs.

3.2. Small amplitude disturbances
Equations (3.11) and (3.14) have solutions describing steady parallel shear flows for which
H=H, and wu;=uy, (j=0,1,...,n) (3.19)

are constant. The only constraint on these constants is that they satisfy condition (3.14). When
(3.11) and (3.14) are formally linearized about these solutions the resulting equations can be

e aa’+ 0,%’+ga£ 0 (j=0,1,...,n), (3.20)
and ji w7\ —u;_y) = H. (3.21)
The solutions to these equations that are equivalent to the neutrally stable solutions (2.11) are
given by g(H—H,) = 0(x—cyt) and uj=u0,~+‘—9—£f—:—:—;2—:) (j=1,0,...,m), (3.22)

where ¢, satisfies the characteristic condition

%w?l[ 1 — 1 ]=g—1. (3.23)
i1 Co—Up; Cop—Ugj—1

The solutions that are equivalent to the unstable mode solutions (2.19) can be written

s Hy) = Blt) and uy =+ LEBASEI I, (324

where ¢, = p + 17 satisfies (3.23) while ¢(x, t) and ¥ (x, ¢) satisfy the equations

¢ 0p_ o o 0p
Tl = T, and o T = 15, (3.25)

With the ; given by (3.22) or (3.24), the y; can be calculated from (3.13) and the v; from (3.10).
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Ifit is assumed that the w; are different in adjacent layers, equation (3.23) can be regarded as
an (n + 1)th degree polynomial for all possible values of ¢,. Generally, this polynomial has (n + 1)
distinct roots, some real and some complex. The real roots correspond to neutrally stable modes,
the complex roots to unstable modes. Any small amplitude disturbance can be regarded as a
superposition of these non-interacting modes. For example, when there are (n+ 1) real values,
(A, Agy oovy Ayyq), Of ¢y satisfying (3.23) any small amplitude disturbance can be represented in the
form

n+1
gH-Hy) = % 0,(x—2,1) (3.26)
r=1
+1 -
and u,-=u0j+n2 0——’%——&2 (j=0,1,...,m). (3.27)
r=1 r"'uoj

The (n+ 1) functions (6, ..., 0,,,) can be chosen so that the (z + 1) functions (u,, 4, ..., #,) take
prescribed values at ¢ = 0. When (3.23) has m pairs of distinct complex roots

(1“1 + 2."71’ Mo * i772> Ry * Z.,'7m)
and M = n+ 1 — 2m distinct real roots (A, Ay, ..., Ay), (3.25) and (3.26) must be modified to read

M m
g(H-H,y) = ﬁ‘.ll 0,(x =2, ) + z_‘.)l Ps(x, 2) (3.28)
- u 0r(x — Ar t) & [/’Ls - uoj] ¢s (x, t) — s %(% t) .
and uj = o + r§1 Ar - uo;' + s§1 [/’(’s - uon2 + 7]3 ’ (3'29)
the @,(x,¢) and ¥ (x, ¢) satisfy the equations
0, 0Py Y,
o TP - 1ok
oy oy o s=1,...,m. (3.30)
s S _ o, —Fs
and ot e = T

When the disturbance is of finite amplitude it cannot be regarded as a composite of non-inter-
acting modes as it can in the small amplitude limit. Consequently, an analysis of the flow produced
by a single finite amplitude mode is only of immediate physical relevance when it can be argued
that this mode contains most of the energy of the disturbance. This occurs, for example, when the
flow is stable and the disturbance is initially limited to a finite interval of the x-axis. Although the
different neutrally stable modes interact for a time, ultimately, because they are moving at
different speeds, they separate. Thus, at some later time the flow consists of isolated modes
separated by regions of uniform parallel shear flow. With this interpretation in mind, in what
follows we analyse the flow produced by a single finite amplitude neutrally stable mode. In the
main we are concerned with critical modes that produce both subcritical and supercritical flow
regions.

4. LARGE AMPLITUDE NEUTRALLY STABLE WAVES
4.1. Polygonal profiles

The finite amplitude generalizations of the neutrally stable waves are described by the simple
wave solutions to equations (3.11) and (3.14). For these solutions we can write

w, = U(H) (j=0,1,...,n), (4.1)

J J
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where H (x,¢) satisfies the nonlinear progressing wave equation

o0H o0H

oH o 4.2

5 TeH) 5 =0 (4.2)
When the expressions (4.1) are inserted in (3.11) and (3.14), and the fact that H satisfies (4.2) is

used, it follows that v, p

et (j=0,1,2,...,n), (4.3)
aH =~ T
and that é 0y (Uy—Uy_y) = H. (4.4)

Conditions (4.3) and (4.4) provide (z + 2) equations for the (n+ 2) variables (U, U, ..., U,;¢) as
functions of H. Then, the variation of H with (x, ¢) is determined from (4.2). A useful alternative to
(4.4) is obtained by differentiating (4.4) with respect to H and then using (4.3) to eliminate the
derivatives of the U;. This yields the characteristic condition

%a)_l _];____1__]_ —1 (45
i j 6‘—-Uj 6‘-—Uj_1 =45 )
which can be viewed as an equation for ¢(/) in terms of the shear profile at any vertical cross-
section of the flow where the fluid depth is H.

Once ¢(H) and the U;(H) have been determined, the images in the (y, /1) plane of the stream-
surfaces separating the layers are given by (3.13) as

g =YH) = £ oy \U=Uy) (j=0,1,...,n). (4.6)

It then follows from (3.10) and (4.2) that we can write

v; = (0H[ox)V;(H) (j=0,1,...,n), (4.7)
where Vi(H) = (U;—c) dY;[dH. (4.8)
When @ = 0in some layers equation (4.4) must be replaced by (3.18) with u; = U;(H). In these
layers
dA h
d—I_—-} = g(()_—;jj—_)_é and []] = Uvj_l. (49)

These results follow directly from (3.15) when (4.2) and (4.3) are used. Also, (4.5), which is an
alternative to (3.18), must be modified to read '

1 1 by
oft | —5 = ——| + L Y £10
all lazyers ! [C—U} 6‘-—0}_] all lxa,zirers (6‘-—[/})2 8 ( )
where w0 where 0= 0

Note that equations (4.1)—(4.10) remain valid when g is replaced by any function of H. Thus,
the above analysis is directly related to the flow listed in §10.

Asasimple check on the above formula note that when the flow is unsheared, so that there is one
layer in which @ = 0 and no layers in which o # 0, conditions (3.18) and (4.9) imply that

hy=H and U, —c¢=+(gH)%. (4.11)
Conditions (4.11) and (4.3) then imply that
U, + 2(gH)% = constant. (4.12)
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These are the well-known Riemann relations that hold for any progressing wave on an unsheared
flow.

The finite amplitude waves described by (4.1)-(4.10) are neutrally stable disturbances in the
sense that during their passage the total variations in / and in « at any fixed y are identical at all
horizontal stations. These properties for /7 and  follow directly from (4.2) and (4.1). However,
unlike the predictions of linear theory, the nonlinear theory predicts that the amplitude of v can
grow as the wave propagates. For, when ¢ varies with H, (4.2) predicts that the slope of the free
surface will usually grow without bound in some part of the wave until, at some finite time, the
wave breaks. When this occurs the hydraulic flow approximation, which is the basis of equations
(2.1)-(2.4), is invalidated.

In general there is more than one set of variables [U,(H), Uy (H), ...,U,(H)] satisfying equations
(4.3) and (4.5) and taking prescribed values consistent with condition (4.4) at H = H,. Equiva-
lently, there is more than one finite amplitude neutrally stable mode for which the shear profile
has a specified form at some cross-section of the flow where the depth is /. Each such mode can be
characterized by the value of ¢,, = ¢(H,), which satisfies (3.23) at H = H,,. ¢, is the velocity with
which the depth H = H, propagates when only that mode is excited.

4.2. General shear profiles
Actually, although the analysis is much simpler for polygonal profiles, the equations governing
finite amplitude neutrally stable waves can be found for quite general forms of the shear profile.
This follows from a result first obtained by Blythe ¢t al. (1972), who showed that equations (2.1)—
(2.4) have solutions for which

u=U(Hy) and v =§£V(H,y), (4.13)

where H (x, t) satisfies an equation of the form (4.2). When the forms (4.13) are iriserted, and
equation (4.2) is used, it follows from (2.1) and (2.2) that U, V and ¢ satisfy the equations

oU  oU
(U—C)m+V6!—/‘+g=0 (4.14)
oUu oV
and 5—}—]4—_6; = 0. (4.15)
In addition, conditions (2.3) and (2.4) imply that
V=0 on y=0 (4.16)
while V=U-¢ on y=AH. (4.17)

Equations (4.1)—(4.8) follow from (4.9)—(4.13) if it is assumed that U and V are piecewise linear
functions of y.

The waves described by the solutions to equations (4.13)—(4.17) may be of infinite horizontal
extent or they may be separated by sharp fronts from regions of parallel steady shear flow where
H = constant and v = 0 while u varies with  but not with . This latter situation was discussed by
Blythe et al. (1972) for the case when the flow was either wholly subcritical (z < ¢) or wholly
supercritical (# > ¢). The simplest situation corresponds to a wave of constant length A (> H)
separating two semi-infinite regions where the flow is steady and parallel. When the flow is
subcritical the shear profile Uy(y) ahead of the wave, where H = H, can be specified since all
particles in the wave have originated from this region. The speed ¢,, with which this front

26 Vol. 287. A.
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moves, satisfies (2.17). This follows directly from (4.14)—(4.17) by noting that (4.14) and (4.15)
imply that
E( 4 )= g _ (4.18)
y\U—-¢)] (U~c)?

When (4.18) is integrated between y = 0 and y = H and the boundary conditions (4.16) and
(4.17) are used it follows that

H dy B
at any fixed H, gfo W =1 (U # C). (4.19)

Condition (2.17) is a special case of (4.19) with ¢ = ¢, and U = Uy(y). For a polygonal shear
profile which contains no level at which U = ¢, (4.19) integrates to give condition (4.5). (Note that
in the jth layer dy = wj*dU.) When the flow is supercritical the subscript zero refers to conditions
behind the wave.

For flows containing a critical level at which U = ¢ the flow pattern is considerably more com-
plex than it is when the flow is either wholly subcritical or wholly supercritical. Such waves
usually contain trapped particles that are convected with the wave. Thus, in addition to specify-
ing the vorticity w at all particles in the subcritical flow region ahead of the wave and at all
particles in the supercritical flow region behind the wave, @ must also be specified at all trapped
particles. A further complication also arises from the fact that the speed of some of the particles
that originated in the subcritical flow region ahead of the wave may increase after being overtaken
by the wave so that, after spending a finite time in the wave, they are turned and exit at its front
into the supercritical flow region. Similarly, some faster moving particles that enter the wave from
behind can be slowed once they enter the wave so that, ultimately, they are overtaken by the
wave. Thus, even though the disturbance can still be viewed as a region of unsteady flow sep-
arating two semi-infinite regions of steady parallel flow, the shear profile in the steady flow regions
cannot be specified arbitrarily; if the particle that enters the wave at the level y = Y, exits at the
level y = Y, then the vorticity at the levels y = Ye and y = Y, in the steady flow must be the same
since w is conserved at a particle. In general, this vorticity mixing process produces a shear profile
that is inflectional at the critical level. The exceptional case is when the vorticity is the same at
all particles that are turned by the wave. Then the vorticity mixing process produces a shear
profile for which the vorticity is constant over some interval that includes the critical level. In
what follows we consider a simple polygonal profile for which this condition is satisfied.

5. TWo LAYERED MODEL
5.1. Wave speeds

Figure 3a shows a simple two-layered shear profile that can support a critical mode and for
which there are no unstable modes. In the lower layer, of depth £ (= #,) the fluid has a uniform
shear @ > 0; in the upper layer the fluid is unsheared. It then follows that for neutrally stable
waves we can write

_ {wy+Uo(H) for 0<y< h(H),} (5.1)

U(H)  for h(H)<y<H,

where k= (U, - U)|w. (5.2)
According to (4.3)
dy, g

aty __ & ab, ¢
dH  ¢-U,

and JH =y

(5.3)
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Also, [gH—(c—U)*] (c =) = g(U - Uy)?[o. (5.4)
This follows directly from (4.10) if we use the fact that the depth of the upper layer
hy=H—h=H- (U —U,)|o. (5.5)

Equations (5.3) and (5.4) govern the variations of Uy(H), U;(H) and ¢(H). Once these have
been determined (5.2) and (5.5) determine 4(H). v can be determined either from the equations
listed in §3.1 or, more directly, from (4.9), (4.11)—(4.13) and (5.1). These conditions imply that

Y for 0<y<hkh
i |4 TUp—¢ y
V= — (5'6)
| y-H U for h<y<H
gU1~—-o+ 1—€ or \y\ .
This variation is depicted in figure 3.
H -
y U, (b)
(a)
H-h y
H
Bl
h
' |
[ : u 0

&h|(uy—c) v OH[ox

FIGURE 3. (@) A simple two-layered velocity profile which can support a critical mode. In the lower layer of depth
h the vorticity, o, is uniform. In the upper layer the fluid is unsheared. (b) The profile of the vertical compo-
nent, v, of the fluid velocity when the horizontal component is as shown in figure 24. The amplitude of v is
proportional to 0H[0x.

It is instructive to regard (5.4) as an equation for the normalized wave speed

v Uy
¢ U,—U, (4.7)
U —U U, —U,)?
as a function of r= —IT}= ——1(-07;,—9 and F?= Q_Lg;ﬁ_oz.__ (5.8)
In terms of these variables (5.4) reads .
c*—r
sy i (5.9)

For given values of r and the Froude number F there are three values of ¢* satisfying (5.9) (see
figure 4): one with ¢* < 0, associated with a backward travelling wave; one with ¢* > 1, associated
with a_forward travelling wave; and one with

0<r<e* <1, (5.10)
26-2
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which is associated with a slow travelling wave. Since

U-T,

* —
Ut =177,

lies in the range 0 < U* <1, (5.11)

only the slow waves, for which 0 < ¢* < 1, are critical modes. For these waves (5.1), (5.7) and
(5.8) imply that at the critical level where u = ¢

y=yc(H) =c*h <rh <h. (5.12)

For the backward wave the flow is supercritical and for the forward wave it is subcritical.

AF?

1 cf c*

Ficure 4. Depicts the variations of the three wave speeds as a function of F? at fixed r; ¢ff, ¢ff and ¢ denote the
speeds of the backward, forward and slow waves.

5.2. Internal waves

An analysis of all three families of waves is given in appendix A. For slow waves, which corres-
pond to critical modes, all the solution curves of equations (5.3) and (5.4) pass through the
singular point where Uy=U-=c and h=0. (5.13)
Any solution can be characterized by the value of w?Hy/g where Hy;, the value of H at which
condition (5.13) holds, is the maximum value of H that can occur in the wave. In this and
subsequent sections we discuss the special case as w*Hy[g— 0. In this limit the critical modes are
internal waves in the sense that although

H=HM[1+O(9%‘)], (5.14)

so that the free surface is essentially unperturbed during their passage, 7 = #/H can vary over the
full range [0, 1].

If oy =c(Hy) and W = wHy, (5.15)
the solution to equations (5.3) and (5.4) in the limit as w®Hy/g— 0 can be represented para-
metrically by the relations (see appendix A)

U—cy=3Wr3, Uy—cy=W3Er—1)r, (5.16)
and c—ey = W(Er—1)v, (5.17)
w2 ‘
where H=Hy, [1 + (11 r3], (5.18)
gHy
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we w2  wH,
Also, F? = 12 =2k, 5.19
gty gy ¢ (5.19)
while the height of the critical level Yo = r2Hy. (5.20)

We shall be concerned with waves of finite length A separating two semi-infinite regions where
the steady shear flows are identical and the fluid depth is /7. In view of (5.18), the internal wave
limit corresponds to w*H,[¢g < 1. Note that the constants ¢y, Hy; and W can be determined from
the algebraic relations (5.15)—(5.18) in terms of Uy, Uy, and 7, the values of Uj,, U; and r in the
uniform flow.

It is convenient to measure all velocities in units of W, all vertical distances in units of Hy, all
horizontal distances in units of A and all times in units of A/I¥. In terms of these units, the limiting
form of the velocity field is given by the expressions '

y~r(l—3r) for 0<y<mn)
= 5.21
“ €M+{ $r? for rsysl,J ( )
1- for 0<y<
and V= Hyor [( 7y for y r,} (5.22)
Adx\r(l—y) for r<y<l.

Further, the pressure on y = 0,

bo = pu+pW?r(ir—3). (5.23)

The height of the interface separating the sheared from the unsheared flow is
Y =17, (5.24)
and the height of the critical level Yo =712 (5.25)

In equations (5.21)-(5.25) r(x, t) satisfies the equation

or or X
& _|_(;(7')—a—x =0, (526)
where c=cy+r(3r—1). (5.27)

It follows from (5.23) that since p, is a monotonically decreasing function of  and that since
0 < 7 £ 1, p, can only vary in the range

Pu—T3PW?E S by < Py (5.28)

Consequently, the change in ground pressure during the passage of any of the waves is at most
+pW? The variations of Uy, U, and ¢ with p,, which are calculated from (5.21), (5.23) and (5.27),
are depicted in figures 5 and 6. Over the entire pressure range (5.28),

dy, dy;
—9>0 and —2*<o. 5.29
o o (529
However, ¢ does not vary monotonically with p,:
de pu—p .
T 0 when 0< %“;W;’ <4 (0g<r<gd), (5.30)
. de pu—2p
while T <0 when 4 < —%MpW;) <% (Gergi. (5.31)
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Conditions (5.30) and (5.31), together with the fact that p, also satisfies equation (5.26), imply
that large pressure gradients (which, by (5.22), produce large vertical currents) either form in
that part of the wave where g, lies in the range (5.30) and is increasing at any fixed x during the
passage of the wave, or where p, lies in the range (5.31) and is decreasing. In a subsequent paper
we show how this property can be used to explain the formation of squall lines where large
downdrafts form as the ground pressure drops and large updrafts form as the ground pressure
increases. The associated phenomena for small amplitude waves is discussed in §8.

0.5—

Uy

Oy — Yy Uy —Cy

| I |
0.05 0.1 015

(bw—po) 3P W?

Ficure 5. The variations of #, and u, with p, for internal waves.

ool L—

0.5 !—
c-Cy

0.2

M 004 008 0.12 !

0 | ] 1 n j

2
(pyrpo) ] & PW

—02b

Ficure 6. The variation of wave speed ¢ with p, for internal waves.

For later use, it is convenient to have at hand a representation for py(x, t). Suppose thatat ¢ = 0,

) {ﬁow+%PW217(x) for -1 <x<0)
O=

5.32
Powo elsewhere. (5.32)

The corresponding variation in 7 follows from condition (5.23): it is determined from the relation

Yt =rl) =33 —13) = p(x) for —1<x<0, (5.33)
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where r,, the value of r outside the wave, satisfies the relation

3 __ pooo “PM

it =B, (5.34)

Then, according to equations (5.26), (5.27), (5.23) and (5.33), at any subsequent time p (¥, #) and
r(x,t) inside the wave can be computed from the relations

Pf;lf/‘}: =4(rt—rd)—3(—1r3) =p(s) (—1<s5<0), (5.35)
2

where s(x, t) is determined from the equation

X—Col =5+ (r—1y)[3(r+710) —1]t, =4d say. (5.36)
According to (5.27), o = Oy + 75 (37, —1). (5.37)

6. HYDRAULIC CHANNEL FLOWS
6.1. An exact solution

The velocity and pressure fields described by equations (5.21)—(5.28) are exact solutions of the
equations

u v
O (6.1)
u au 1 apo —
and TR PR Oy+p~—0x 0 where py = py(x, 7). (6.2)

These solutions also satisfy the conditions that
v=0 on y=0 and v=0 on y=Hy. (6.3)

Thus, the results of § 5.2, and the following analyses, are directly relevant to the study of unsteady
hydraulic shear flows between two parallel flat plates. The plates could either be at y = 0 and at
y = Hy, or at y = 0 and y = 2Hy; when the flow is symmetric about the centre plane y = Hy
(see figure 7). In fact, the solutions presented in § 5.2 are just a special case of a more general class
of solutions to (6.1)—(6.3), that are valid for general shear profiles, for which

d d
Lot op =0, (6.4)
d
u=mean=%me (6.5)
while V=0 on y=0 and V=0 on y=Hy. (6.6)

When the expressions (6.5) are inserted in (6.1) and (6.2), and (6.4) is used, if follows that

ou ov
Opy Oy (6.7)

0
and that (U-c¢ )g;f+ V— U p1=0. (6.8)
0
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Unlike the situation when the flow has a free surface, the neutrally stable solutions described by
(6.4)—(6.8) are only possible when the flow contains a critical level. This follows immediately
from the fact that (6.7) and (6.8) imply that

o( v 1
— = 6.9
(o) = o= (6.9)
Consequently, if there is no level at which U = ¢, (6.6) and (6.9) imply that
e dy
— = 6.10
fO (U— 6)2 03 ( )
which is clearly impossible.
N

A\

2H,

z

Ficure 7. The shear profile assumed for the flow between two parallel flat plates discussed in section 6.

6.2. Polygonal profiles

Any polygonal shear profile also remains polygonal when the flow is governed by equations
(6.1)—(6.3). The equations governing such flows are still those listed in section 3.1 except that the
term g0 H[0x in equations (3.5) and (3.11) must be replaced by 9p,/p 0x. Also, H(,¢) in equations
(3.12), (3.14) and (3.18) must be replaced by the constant Hy. The equations listed in section
(3.2) still describe small amplitude disturbances if g(H — H,) in (3.22) and (3.24) is replaced by
(po—poo) /P> where py, is the constant pressure in the ambient flow, while H in (3.21) is replaced
by Hy. Also, the constant g~ in (3.23) must be replaced by zero.

For large-amplitude neutrally stable waves on flows with polygonal shear profiles equations

(4.1) and (4.3) are replaced by the equations
dUy; 1

w=Up) and FH= oy (6.11)
while (4.5) becomes é}l w;! [c —IU,._ET;—];] = 0. (6.12)

Note that whereas (4.5) was an (n+ 1)th degree polynomial for all possible values of ¢, (6.12) is an
nth degree polynomial. Loosely, this is because the mode corresponding to a surface wave cannot
be excited when the flow is contained between rigid boundaries.

The fact that the flow must contain a critical level can easily be deduced from (6.12). This

condition can be written A

él (e=0y) (Z— 0 =" (6.13)
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where h; = w;1(U; — U;_,) is the depth of the jth layer. In order to satisfy (6.13) there must be at
least one layer in which (¢—Uj) (¢— U;_;) < 0 and this is only possible if ¢ = U somewhere in the
layer.

The general problem of finding necessary and sufficient conditions that must be satisfied for a
flow with a free boundary to be approximated by a channel flow will not be discussed in any
detail here. It seems clear though that a necessary condition is that the flow should contain a
critical level because the approximating flow always does. The mathematical problem reduces
to finding under what conditions the statement (4.5) can be approximated by the statement
(6.12). It should be noted that (4.5) can be written as

j_%l tF7?2=1, (6.14)
— —¢)®
where F; = (G c)g(k(j]j"l Q) (6.15)

is the local Froude number of the jth layer. In (6.14) the plus sign corresponds to layers in which
there is no critical level and the minus sign to (critical) layers in which there is. If there is one
critical layer with Froude number F. it follows from (6.14) that a sufficient condition for the flow
to be approximated by a channel flow is that

F2<1. (6.16)

For the two-layered profile shown in figure 34, (6.16) is a necessary and sufficient condition.

6.3. The effect of an unsteady ambient pressure gradient

Actually, with a slight reinterpretation of the variables the solutions presented in §5.2 are the
most general solutions to equations (6.1)—(6.3) for which the shear profile is of the form shown in
figure 3a. Physically, all hydraulic flows that are possible between two parallel flat plates which
are consistent with this profile only differ from those described previously by the superposition of
the effect of a time varying, but spatially uniform, pressure gradient.

To obtain this result note that in the lower layer where the vorticity is uniform

u = wy +uy(, 1) (6.17)

and, according to (6.1) and (6.3), v = —y Ouy/Ox. (6.18)
When (6.17) and (6.18) are inserted, equation (6.2) implies that

Ou, Ouy  10py 0

§+u0-5;+; ox (6.19)
Also, in the unsheared upper layer equations (6.1)—(6.3) imply that
u=u(xt) and v = (Ou/Ox) (Hy—y), (6.20)
|t 19 _
where 5 T, +/—) i 0. (6.21)
Clontinuity of # and of v at the interface y = Hyr(x,1) (6.22)
also imply that r= (uy—uy) W (6.23)
or  Ouy
and "= o (6.24)

27 Vol. 287. A.
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From (6.23) and (6.24) g = W(kr2—1) +cy(t) (6.25)
and uy = ¥Wrt+ey(1), (6.26)

where ¢y (2) 1s an arbitrary function. When the expressions (6.25) and (6.26) for u, and u, are
inserted in the equation obtained by eliminating 0p,/0x from (6.19) and (6.21) it follows that
7(x,t) satisfies the equation

Or[ot +[ey(t) + W (%2 —r)] Or[dx = 0. (6.27)
This integrates to give
r=7(s) and x—x,(t) =5+ (r—ry) [3(r+7,) — 1], (6.28)
t
where Koo (2) =J ¢o(t') dt’ (6.29)
0

and ¢, (t) is given in terms of ¢y (¢) by (5.37).
It remains to calculate p,(x, ). This is done by using equations (6.19), (6.25) and (6.27): these

yield Do = pu(t) +pW2(Ert —1r3) — p(dey/pdt) (x — x,(2)), (6.30)

where py(¢) is an arbitrary function.

Except for the dependence of ¢y; and py; on ¢, the general solutions obtained above are identical
to those already constructed in §5.2, They can be used to describe a disturbance moving into a
region where H = H,, and, at any fixed (x, ¢), the shear profile is of the form depicted in figure 3a.
However, the ambient flow has a time varying acceleration dey/d¢ that is balanced by a time
varying, but spatially uniform, pressure gradient —p dey/dt. In a frame of reference moving with
speed ¢y (t) all these flows are identical when the pressure is computed relative to its ambient value.

The effect of a time varying but spatially uniform ambient pressure gradient on the more
general flows described by equations (2.1)—(2.4) can also be easily assessed. When p,, the pressure
on the free surface, is not uniform in x and ¢ the right-hand side of (2.1) must be replaced by the
‘body force’ term —0p,/p0x. When this only varies with ¢, = dX(¢)/dt say, and the horizontal
velocity profile in the constant depth region is of the form u =2'(¢) + U,(y), then the equations

t
governing any disturbance are still of the form (2.1)-(2.3) but with x replaced by x—f () dt
and with u replaced by 4 — 2'(¢).

7. PARTICLE PATHS

For neutrally stable waves with a free boundary it is possible to calculate the variation in the
vertical height of any particle as a function of the current depth H independently of how H varies
with (x,¢). In fact the imagesin the (y, i) plane of any particle is an integral curve of the equation

Dy V
DH™ U-¢ (7.1)
where Ul(y, h), V(y, H) and ¢(H) satisfy equations (4.14)~(4.17). This follows directly from (4.13)
and the fact that at any particle

Dy

D =¢ ad =ty

DH 0H 0H oH

= (U~d5 (7.2)

Similarly, for neutrally stable waves contained between rigid boundaries it is possible to calculate
the variation in the vertical height of any particle as a function of p,, the ground pressure
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immediately below the particle, independently of how p, varies with (x, ). The images in the
(y, po) plane of any particle is an integral curve of the equation
Dy __V
Dp, U—c¢
where U(pg, y), V(pe,y) and ¢(p,) satisfy equations (6.6)—(6.8).

For the two-layered profile, when the flow is described by equations (5.21)-(5.23), equation
(7.3) implies that at any particle

(7.3)

(1=r)y
Dy = for 0y <y, (7.4)
Dr }{_
1=y for r<y<i, (7.5)
1—7r
where po = b+ PWH(Ir—13). (7.6)

Several integral curves of the system (7.4)—(7.6) are depicted in figure 8. The arrows on these
curves indicate the direction of particle motion in the part of the wave where 9p,/0x > 0. The
direction of motion where 9p,/0x < 0 is obtained by reversing the directions of the arrows.

y[Hy

0 02 04 06 08 10
12(py— pu) lPW?

Ficure 8. Particle trajectories in the (y, p,) plane. Arrows denote the direction of travel in that part of the wave
where 0p,/0x > 0. Where 0p,/0x < 0 reverse the arrows. — — —, the critical level. In an actual wave p, varies
in some range fo, < po < pou- These levels, together with p,,, the ground pressure outside the wave, are depicted
by dotted lines. p; and p,, are the extreme values of poy and pon,: py —pm = 15 W2 The curves in region I are
the trajectories of trapped particles. Those in IT represent particles that leave the wave at the same side they
entered but at a different height. Those in regions III and IV represent particles that completely traverse
the wave.

An important integral curve of both (7.4) and (7.5) is
y=r1 =y, (7.7)

This separates the lower region where the flow is sheared from the upper unsheared flow region.
According to (7.6) and (7.7) the variation of y; with p, is determined from the relation

Yyi -3y} = (po—pw)3pW2. (7.8)

27-2
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Also shown in figure 8 is the variation in height of the critical level yo = 72 This is determined
from the relation

e TERRe =39k = (b= [P W™, (7.9)

Both equations (7.4) and (7.5) can be integrated. The first can be transformed into a linear
equation for 7—! as a function of y/r. This integrates to give

— 1—
Z’—ﬂexp (__r) = constant, =

y r—y

R

exp (R, (7.10)

where the constant R, which can take any value in the range [0, 1], labels the particle that crosses
the critical level at (r,y) = (R, R?). In the vicinity of this level equation (7.10) implies that

gy~ R2+R[2(1—R) (r— RT3, (7.11)

so that a particle always moves in a direction of increasing r (decreasing p,) after crossing the
critical level. In practice, to compute the integral curves in the sheared flow it is best to express y
and r as explicit functions of the variable o = y/r and of the parameter R, which is the value of o
at the critical level. Thus, relation (7.10) can be replaced by the two equivalent relations

r= [1-}- (1-0) (R‘l—l-ln%%e)]_l and y = or(o,R). (7.12)

The branch of the integral curve above the critical level is obtained as o varies in the range
R < o < 1. For the branch below o varies over the range

[1+(R1=1)exp(R Y] T<o <R (7.13)
Equation (7.5) easily integrates to give
(1-gy) = (1-Yo) (1-7), (7.14)

where the parameter Y, labels the particles that intersect the curver = O aty = Y.
In any particular wave p, will not, in general, vary over the full range (5.28) but only over some

Pom < Po < Pou- (7.15)

This corresponds to 7 varying over the range

intermediate range

rm <7< Ty (7.16)

where rm can be computed from pgy, and 7y from pom, by relation (7.6). Consequently, only
that part of figure 8 contained between the dotted lines p, = pom and p, = pyy need be used to
analyse the flow pattern. This can be divided into four non-overlapping regions. Region I,
bounded by the line p, = pom and the integral curve R = r,; region II, bounded by the line
po = pom and the integral curves R = r,, and R = rm, regions III and IV which are above and
below region II. Particles (that are represented by integral curves) in region I are trapped particles.
As they are convected with the wave they move up and down from subcritical to supercritical
flow regions and back and forth inside the wave between adjacent equal pressure levels. The fact
that they are trapped is easily deduced by noting that for a particle to enter or leave the wave it
must attain a horizontal position, where p, = poo, (r = 7). None of the particles in region I do
this. Particles in region IT are of two kinds. Some enter the wave from behind at high supercritical
levels but, before fully traversing the wave, are pulled below the critical level into the subcritical
flow region where, because they are moving slower than the wave, they are subsequently over-
taken by it. Other particles in region II enter the wave at its front at low subcritical levels and,
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before being fully traversed by the wave, rise into the supercritical flow region where they move
faster than the wave and finally exit at its front at a higher level than they entered. Finally,
particles in region ITI enter the wave from behind at high supercritical levels, fully traverse it, and
exit at its front at exactly the same level they entered, while particles in region IV enter at the
front at low subcritical levels and, after being traversed by the wave, leave at the back at the same
level they entered.

Note that when the wave is one of elevation only, so that ry; = 7., there is no region I and, con-
sequently, no particles are trapped in such a wave. On the other hand, when the wave is one of
depression only (rm = 7,,) there is no region II so that all particles entering the wave at its front
exit at its back, and all particles entering from the back exit at the front.

8. KELVIN’s CAT’S EYES
8.1. Large amplitude theory
The actual trajectories of the particles in the (x, y) plane do, of course, depend on how p, varies
with (#, ¢) or, equivalently, on the precise form of p(s). The trajectories of the trapped particles in
region I are determined by relations of the form
y=9(s;8), x==%(;8) and ¢=1i(s;9), (8.1)

where the parameter S identifies the particle that was at the critical level (y,7) = (R? R) where
s =S8att= 0. Risdetermined as a function of § from the condition

R =#(p(S)), where r=7(p(s)) (8.2)

is the solution to equation (5.35). The function # can be determined as a function of j(s) and p(S)
from equations (7.10) and (8.2). To calculate the functions ¥ and 7 use equation (5.36), which can

be written X =s+i(s)t, (8.3)
where ¢(s) is determined from equations (5.17) and (8.2), together with the fact that at any
particle Dx/Dt = u, (8.4)

where « is given by the first of equations (5.21). When x, given by (8.3), is inserted in (8.4) it
follows that the variation of f with s at any trapped particle satisfies the first order equation

Dt de¢

(u—c)]—)—}—a}t=1. (8.5)
It can be shown that this equation can be written
D[ (p(s); p(5)) 11/Ds = A (p(s); b(5)), (8.6)
where A =y(t-y)? and X =y(t—-7)*(y—7?). (8.7)
It follows that at the particle ¢ §’
= [ (B PN [ B(B0):(5) . (5.8

The function ¥ is determined from (8.3) with ¢ given by (8.8)
Although 4 is singular at s = § where y = r2, when p’(S) # 0 the integral in (8.8) is finite. To
see this first note that as - R conditions (7.11) and (8.7) imply that

o >R (1—R)* while %~ +R:(1—R)}2(r—R)]b. (8.9)
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Then note that condition (5.35) implies that

3t —RY) —3(r*— R®%) = p(s) — p(S), (8.10)
so that (r—R) ~[B(S) —p(s)]/2R2(1—=R) when |r—R| < R(1—R). (8.11)

These conditions imply that when |7 — R| is small in the sense (8.11) the dominant approximation
to tis s a0

t~ ifs W (8.12)
As particles always travel in a direction of decreasing p, (increasing r) after crossing the critical
level, the term under the square root sign in (8.12) is positive. Hence, when particles cross in that
part of the wave where dp,/dx > 0 (p'(s) > 0) they move in a direction of decreasing x(s < §) and
the minus sign must be taken in (8.12), while when they cross in the part of the wave where
0po/0x < 0 the plus sign must be taken. When (8.12) is inserted in (8.3), it follows that the
dominant approximation to x in the vicinity of the critical level is
X~ s+i(s) fs__ow_————
s ((S) —p(0))

Finally, the dominant approximation to y is given by (7.11) and (8.11) as
y =R+ (p(S) —p(s))h (8.14)

Particles at the critical level where p’(S) = 0 do not move relative to the wave but stay ats = S.

(8.13)

Their trajectories are given by
¥x=84¢(S)t and y=R2 (8.15)
According to figure 8, after crossing the critical level in a direction of decreasing p a particle
either gains or loses height until it reaches a part of the wave where p’(s) = 0 and p”(s) > 0. Then,
it reverses its vertical direction of travel until it again reaches the critical level at s = §; where

p(8) =p(S) (S # )
and p(s) < p(S) for sin the range [s, 5] (8.16)

The time it takes a particle to travel between these two adjacent identical pressure levels is,
according to (8.8),

(8) = [/ (B8 BN [ (P03 5(5)) o, (8.17)

After reaching s = §; the horizontal direction of travel of the particle relative to the wave is
reversed until it again returns to s = §. During this return trip the statement (8.8) must be
modified to read

£ = [ (B(s); B(S))]1 [&i(ﬁ(S);/?(S)) - f:@@(e);ﬂsn cw]. (8.18)

The time it takes to make this return transit between its two extreme horizontal positions (as
viewed by an observer moving with the wave), as well as all subsequent transits, is always the same
(= 7). Moreover, since equal pressure levels propagate with equal speeds the horizontal distance
between these two extreme positions remains unchanged as the particle moves back and forth
in the wave. During the nth trip of the particle from s = Sto s = §;, (8.8) must be modified to read

= [ BB [ (BS)38) = )7+ [ BB @0]. (.19
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On the nth return trip from s = §; to s = S, (8.8) must be modified to read
t = [ (B BT |/ (B80S + [ #(700)35(5)) o) (5.20)

In the vicinity of the critical level the dominant approximations to (8.19) and (8.20) are

$ do

t o~ (n—l)TifSW, (821)
5 do
and t~nr if& W (8.22)

Itis usually convenient to plot the trajectory of a particle in terms of y and its horizontal position
d=x—cy,t (8.23)

relative to the front rather than in terms of y and x. According to (8.3)
d =5+ ((s) —¢Cx) ¢, (8.24)

where ¢ is given by (8.19) and (8.20). An immediate consequence of conditions (8.21)—(8.24) is
that the trajectory of any particle trapped in the wave is not a closed orbit when viewed by an
observer moving with the front, even though the horizontal distance between the extreme hori-
zontal positions as well as the time it takes to travel this distance does not change for each particle.
This is best seen by noting that D, the value of 4 at the extreme position S, varies with z according

to the faw D = S+ (&(S) —¢a) 7(S) (n—1), (8.25)
while D, the value of d at the extreme position § = S}, varies according to the law
D, = S+ (6(S)) — ) T(Sy) 1. (8.26)

As a particle crosses the critical level its direction of motion relative to an observer moving with
speed ¢, depends not only on the sign of p'(S) but also on whether 7, is less or greater than .
When r,, < % particles at which

Too <R < 2—14 (¢(S) < Co) (8.27)

move downwards and backwards relative to the front in the part of the wave where p’(S) > 0 and
upwards and forwards where p'(S) < 0. However, particles at which R > § —r,, move downwards
and forwards where p'(S) > 0 and upwards and backwards where p'(S) < 0. When 7, > % all
particles move downwards and backwards where p'(S) > 0 and upwards and forwards where
P(S) <.

The trajectories of the particles in regions II, ITI and IV that traverse the region of constant
shear but are not trapped are still governed by equations (7.4), (8.3) and (8.5). Now though it is
convenient to label them by the time 7"and the height Y at which they enter the wave. In termsof
these parameters the solution to (7.4) can be written

r= :1 +(1-0) [inir;+ln (rwl—/Ylfo-)]}—l’ y =or(o,Y). (8.28)

The solution to (8.5) for the particles that enter from the front of the wave is

=y i) Y- 7+ [ R0 (8.29)
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For those particles that enter the wave from behind the lower limit 0 in the integral must be
replaced by —1.

For particles in region I, which do not fully traverse the wave since they never attain a position
where py = pyr, Y in equations (8.28) varies between the two roots ¥; and ¥, ( < ¥;) of the transcen-

dental equation r Y 1—r
7 CxP (Tw — Y) = (rpt—1) exp (rpd). (8.30)
This is a special case of equations (8.28) with
To—Y
R = FEr . (8.31)

Note that in the special case when 7y = 0, ¥; = 7, and ¥, = 0. Then, all particles that cross the
front or the back where the flow is sheared cross the critical level and leave the wave at its front if
they entered at the front and at the back if they entered at the back.

For particles in region III Y varies over the range 0 < Y < Y, while in that part of region IV
where the flow is sheared it varies over the range ¥; < ¥ < 7.

It remains to calculate the particle trajectories in the unsheared flow. All these enter the wave
from behind. y = 7(s; Y) can be determined immediately from (7.14) which implies that

1—y=(1-Y)(1-n)[(1-1.), (8.32)

where 7 = 7(s) is given by (8.2). X(s; ¥, T') and i(s; Y, T') are still determined from conditions (8.3)
and (8.5). Now though u is given by the second of equations (5.21). When this expression is
inserted, equation (8.5) integrates to give

s

t=r11-r)"2 [rw(l —rw)zT-i-f

-1

(1—7) ds]. (8.33)

8.2. Small amplitude theory

We illustrate the results obtained in the previous section by first considering small amplitude
waves when p is small in the sense that

[B] <73 (1—1,)2 (8.34)
Then, at the end of this section, these solutions are contrasted with a particular example of a
large amplitude wave in which || varies over most of the maximum possible range

0< Bl < (8.35)

In the small amplitude limit the vertical extent of the region containing trapped particles is
vanishingly small, O(|p|}); in the large-amplitude limit it may span the whole fluid layer. How-
ever, even in the former limit nonlinear effects are important. They are of twokinds: those asso-
ciated with the presence of a critical level, and those associated with the cumulative influence of
amplitude dispersion.

When condition (8.34) holds, the appropriate approximations to r, # and v are

= To— 3152 (1—10) 7(s); (8.36)
‘=t {y+%r; *b(s) for 0<y<, (8.37)
R P Vi TG e )7p(s) for r<y<1; (8.38)
1—ry)y for 0<y<r, 8.3
and v = _%752(1__7.00)__1@915/(3)6_5{( 7 )y or Yy ( 9)
A % |r,(1—y) for r<y<1. (8.40)
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In these equations #,,, denotes the ground speed ahead of the wave and s(d, ¢) is determined from

h iti _
the condition that d=x—cot = s+3r5(1—=r0) (1 3r.) B(s) &. (8.41)
Also, b = Ugoo +72. (8.42)

Note that, according to (8.41), when r,, < % positive levels of p move faster than the wavefront,
while when 7, > } they move slower.

In the small amplitude limit the vertical displacements of particles crossing the critical level
y = yc (~r2)is an order of magnitude higher than that of other particles. This is not because the
magnitude of v is an order higher at the critical level than elsewhere but simply because these
particles stay in the wave much longer. The precise form of the trajectories can easily be cal-
culated from the limiting forms of equations (8.1)-(8.33) or directly from the velocity fields
described by equations (8.36)—(8.42). For particles in region I they yield the expressions

y =13 £[p(S)—p(s)] (8.43)
8 do
(n——l)‘rif TSI (8.44)
and d = s+ 121 =7.) (1= 31, (9 s (P(8)=0(0)
nr +fs ___d9 (8.45)
“ s (B(S) = p(0))¥ '
for the trajectories. The arrival times are given by (8.21) and (8.22) with

(8.46)

J‘Sl dé
s (B(S)—pO)4
The limiting forms of the particle trajectories in the other regions are easily calculated from

equations (8.28)~(8.33), (8.36) and (8.41). In region II, which only occurs when p > 0 in some
part of the wave, the trajectories are described by (8.41) with

§ de 2 _p 7.2
=74 [ g (AT <) (547

for particles that enter the wave from the front and with

s do 1
1= 72 [ prgay (<<, (8.48)

for those that enter from the back. In both cases
y=r5£[(Y-r3)*—p(s)]h (8.49)

P denotes the maximum value of / in the wave.

In region IV and that part of region III where the flow is sheared 4 is again given by (8.41)
with ¢ given by (8.47) for 0 < Y < r2 — 4 and by (8.48) for 72 + ¥ < ¥ < r,,. However, ¥ must
be determined from the condition

2 (Y —1,\? Y—r2 _
E(EE) o-rrrmigEe-n4s-o (8.50)

This can be obtained from equations (7.12), or, more directly, by using (7.4) to expand (r—r,,) as
a power series in (y—Y) and then using (8.36) to express (r—7,) in terms of . The statement
(8.50) is uniformly valid in the shear flow region at all particles that are not trapped. Actually,

28 Vol. 287. A.


http://rsta.royalsocietypublishing.org/

A

'y
N

o \

.
|
L

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

/ \

r

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

222 E. VARLEY, J. Y. KAZAKIA anp P. A. BLYTHE

without loss in accuracy, the coefficient of (y — ¥)2 can be replaced by unity, its value at the critical
level where Y ~ r2. When |Y —72| > | p|} the statement (8.50) is well approximated by

Y= Y—Emp(f). (851)
Then, t=T+(Y—-r2)1 (0<Y<r2 .y A (8.52)

for the particles that enter the wave at its front while
t=T+(Y=r2)1+s5) (2+ph<Y <r,), (8.53)

for those that enter at the back.
Finally, in the part of region ITT where the flow is unsheared dis given by (8.41) with

(s+1)
t= T+foo(1 ey (8.54)
. _ 1 (1-Y) _
while Y= Y———2-m[)(5) (8.55)
According to (8.41) the effect of amplitude dispersion can only be neglected when
2 —
1< 2 ro(1=7s) say. (8.56)

= , =1
|1—3700I lp/(s)lmax P

For these times s can be formally approximated by d in equations (8.43), (8.46) and (8.47)-
(8.55). In particular, equation (8.43) then yields the simple explicit expression

y = 2 £ [B(S) —B(d) Tt (8.57)
for the trajectories of the trapped particles in the (y, d) plane. This relation describes the classical
Kelvin cat’s eye pattern for the particle paths which, to the approximation that amplitude dis-
persion is not important, form closed curves that do not distort as the particles move backwards
and forwards in the wave. However, when condition (8.56) does not hold the parameter s cannot
be approximated by 4 and the full equations (8.48)—(8.46) must be used to calculate the particle
trajectories. Ultimately, of course, the wave usually breaks. When 7, < § this first occurs at
t = ty in a part of the wave where §’(s) < 0, which means that breaking occurs when the pressure
is rising during the passage of the wave. This is the usual situation in hydraulics. However, when
7o > % breaking first occurs at ¢ = ¢t where §’(s) > 0, or in a part of the wave where the pressure
is falling during the passage of the wave! The effect of breaking will not be analysed here.

The fact that the vertical displacements of the particles in the vicinity of the critical level are an
order of magnitude higher than elsewhere follows immediately from (8.43) and (8.53). At the
critical level they are O(|p|}), in the unsheared flow they are O(|p|). This is well illustrated in
figures 9 and 10 which depict typical particle trajectories in the vicinity of the critical level when

b(x) = —esin?mx (=1 <x<0,e>0). (8.58)

2
For such waves Iy = E’i(l — 7o) |[1—38ry,| et (8.59)
and breaking always occurs at d = —0.09 when 7, > § and at d = —0.91 when r,, < }. Only

trajectories in thevicinity of the critical level are shown and the vertical scale measure s (y —73) [et.
On this scale the particle trajectories away from the critical level are horizontal. For the situation
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—— e —e———]
| ] |
-1.0 -05 0
d=x—cy,t

Ficure 9. Particle trajectories as viewed by an observer moving with the front in a small amplitude wave. At
t =0, p =—esin® mx, where ¢ = 2x 1075, Since r2 = 0.9 > %, d¢/dp, < 0 and the wave steepens at the
front where the pressure is falling. It breaks at ¢y, = 796. Only trajectories in the vicinity of the critical level
are shown and the vertical scale measure is ¢-#(y—r2). Away from this level the flow remains essentially
parallel. The trajectories of the two trapped particles S = —0.1 and § = — 0.3 are shown. The wave breaks
before these have made two complete orbits: the Kelvin’s cat’s eye pattern rapidly distorts.

-1.0 —05 0
d=x—cyt

Ficure 10. Particle trajectories as viewed by an observer moving with the front in a small amplitude wave. At
t = 0 p = —esin® nx where ¢ = 10-% Now, since 7% = 0.1 < }, d¢/dp, > 0 and the wave steepens at the
back where the pressure is rising. It breaks at ¢, = 8483. The trapped particles § = —0.1 and § = — 0.3 make
25 and 38 orbits before breaking occurs. Since [d¢/dp,| is much smaller than for the situation depicted in
figure 9 the cat’s eye pattern distorts slower. The broken curves denote the particle trajectories during the
first orbits, the full curves just prior to breaking. Also shown are typical trajectories of particles that enter the
wave and completely traverse it. The broken curves represent particles that enter at ¢ = 0 and the full curves
particles that enter at the same height at ¢ = ;.

28-2
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depicted in figure 9, 72 = 0.9 and ¢ = 2 x 105, which yields t; ~ 796. The trajectories of the two
trapped particles § = —0.1 and § = — 0.3 are shown. Since 7(—0.1) ~ 371 and 7(—0.3) ~ 248
neither of these particles complete more than one complete orbit before the wave breaks. Thus,
even though the small amplitude requirement (8.34) is satisfied, the effect of amplitude dispersion
is significant before these particles make one complete orbit. Figure 10 depicts the situation when
r2 = 0.1 and € = 10~ to yield ¢; ~ 8483. Now 7(—0.1) ~ 166 and 7(—0.3) ~ 111 so that the
trapped particles S = — 0.1 and § = — 0.3 make 25 and 38 circuits respectively before the wave
breaks. The broken curves depict either the first orbits of these trapped particles or the paths of
particles that enter the wave at ¢ = 0. The full curves depict either the last orbits of the same
trapped particles or the paths of particles that enter the wave just before it breaks.

\

1.0

// 05 mc
— = -
< S
- B <
-~ N
~ 7 ~N N
Pid S§=-0.3
-
- l I I
—1.0 —0.8 —06 —0.4 "0
d=x—cyut
Ficure 11. Typical particle trajectories in a large amplitude wave for which p = —0.1 sin? ns and 7% = 10-2, The

wave amplitude is sufficiently large for dc¢/dp, to be positive in some parts of the wave and negative in others.
Thus, steepening occurs in a part of the wave where the pressure is dropping and also in a part where the
pressure is rising. (See figure 15 and the accompanying caption.) The broken curve depicts the position
of the critical level at ¢ = 0 and the full curve (without arrows) its position just prior to breaking which
first occurs at the frontat ¢ = 1.35. The full curves with arrows are the trajectories of some typical particles

for 0 < ¢ < 1.35.

0 0.2 0.4

0.6

12(py—bw) [P W?

FIGURE 12. Streamline pattern in the (y, p,) plane as viewed by an observer moving with speed ¢y. This pattern
is independent of py(x, ¢) except that the arrows indicate the flow directions in the part of the wave where

dplOx > 0.

0.8
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Figure 12 depicts typical particle paths when 7% = 102 and ¢ = 10~ For these values of the
parameters the wave associated with the pressure variation (8.58) is a large amplitude wave and
the full equations listed in section 8 must be used to calculate the flow variables. The wave breaks
at # ~ 1.35. Only the paths of particles up until this time are shown. None of the particles that
crossed the critical level at ¢ = 0 (depicted by the broken curve) have made a complete orbit
before the wave breaks, neither have the particles that entered the wave from the back yet fully
traversed the wave.

9. STREAMLINES

The images of the streamlines in the (y, p,) plane can also be determined independently of how
b, varies with (x, £). To do this note that the streamline pattern relative to an observer moving
with a horizontal velocity ¢ is determined from the condition that

dy v ]

A 9.1

dx u-—¢ (9-1)
When the expressions (5.21) and (5.22) for # and v are inserted in (9.1) it follows that the images
of the streamlines in the (y, 7) plane can be calculated from the conditions that

{ (1—r) y/y+272—r—§) for 0<y<r,} (9.2)
B V(32 —7) for r<y<1. '
The constant qg=(q- cM) /W (in dimensional variables). (9.3)
In particular, when ¢ = ¢, g=%2—r,. (9.4)
Equations (9.2) integrate to give
L—[t+2§—y—y2y7']} for 0<y<rv,
={ /72— oznd 9.5
' v 2qy for r<y<1. (9.5)
1-y

The parameter 7, which is constant at a streamline, can take any value in the range (0, 7+ %). The
variation of y with p, at any streamline can now be calculated from (9.5) and (5.11). This is
illustrated in figure 12 when ¢ = ¢y (7 = 0).

Figures 13 and 14 depict typical streamline patterns as seen by an observer moving with the
front speed ¢, when the particle paths are those shown in figures 9 and 10. The broken curves
denote the streamlines at ¢ = 0 and the full curves at an instant just before breaking occurs. The
ground-pressure signatures at these times are also shown. Note that although the effect of un-
steadiness is insignificant over the time that it takes a particle to make one complete orbit when
(r%,€) = (1071, 10~%) (particle paths and streamlines almost coincide), the effect of unsteadiness
is clearly significant over this time when (r2,€) = (0.9, 2 x 10-5). Of course, even in the former
case the cumulative effect of unsteadiness has completely changed the pattern before breaking
occurs,

Figure 15 shows the change in the streamline pattern and ground pressure signature in the
large amplitude wave whose particle paths are shown in figure 11. Note that the pressure profile
steepens towards the front of the wave where the pressure is falling and also towards the back
where the pressure is rising. This produces large downdrafts towards the front and large updrafts
towards the back of the wave. The explanation easily follows from the graph for ¢($,) (see figure
6). Since r,, < %, as p, drops from Py, to (pg)eri¢ (at which r = %) cdecreases and the wave flattens,
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Then, any further decrease in p, is accompanied by an increase in ¢ so that over this pressure
range the wave steepens as p, falls. After p, has reached its minimum value and begins to rise ¢ at
first decreases and the wave flattens. However, after p, has passed () oriy O1 its way back to poec
again begins to increase and the wave steepens as p, rises.

(pﬂ "'poo)/%pwz

—€

Freure 13. The ground pressure signature and typical instantaneous streamline patterns (flow directions) as
viewed by an observer moving with speed ¢, when the particle trajectories are those shown in figure 9.
———, The situation at { = 0; ——, the situation at ¢ = #,. Since de¢fdp, < 0 everywhere breaking only
occurs at d = —0.09 where p, is dropping.

(y—r2)cb

(Bo—t) ipW?
de o

Fieure 14. The ground pressure signature and typical streamline patterns as viewed by an observer moving with
speed ¢,, when the particle trajectories are those shown in figure 10. - — —, The situation at ¢ = 0; , the

situation at ¢ = ¢3. Now, since de/dp, > 0
is rising. ‘

everywhere breaking only occurs at d = —0.91, where the pressure
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1.0
y/Hy

0.7

04}

-0.1

Ficure 15. The ground pressure signature and typical streamline patterns as viewed by an observer moving with
speed ¢, in the large amplitude wave where the particle trajectories are shown in figure 11. Steepening of the
pressure profile occurs both as the pressure is dropping and rising. (For an explanation see the text.) — — -,
The situation at ¢ = 0; ——, the situation at ¢ = ¢5.

10. ANALOGOUS BAROTROPIC HYDRAULIC SHEAR FLOWS
10.1. Introduction

There are many different hydraulic shear flows for which the governing equations can be
transformed either into the set (2.1)~(2.4) or into the set (6.1)—(6.3). The only difference is that
the gravity constant g in equation (2.1) is usually replaced by some function of H. Since the
results obtained in this paper are also directly applicable to these flows we list some of the more
important ones.

10.2. Axi-symmetric pipe flow

With a slightly different interpretation of the variables equations (6.1)—(6.3) describe axi-
symmetric hydraulic flows down a circular pipe. If « and w denote the axial and radial fluid
velocities, the equations governing such flows are

ou 10
'&c'l'z'a—a(dw) =0 (10.1)
Ou Ou Ou 10
and 5f7+u6}+w5‘—l+;5}= 0, (10.2)
where p = po(%, ¢). In addition,
w=0 when ¢=0 and a=a, (10.3)

where q, is the radius of the pipe. Equations (10.1)—(10.3) are identical with (6.1)-(6.3) with
y =m(a3—a?), v=Dy/Dt=—2maw and Hy = mds. (10.4)

The scheme described in § 3 is equivalent to approximating the shear profile in the pipe by a series
of parabolic profiles. In particular, the two layer profile discussed in §§4-9 is equivalent to the
profile shown in figure 16.


http://rsta.royalsocietypublishing.org/

A

'y
fA \

o \

.
|
L

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

y \

r

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

228 E. VARLEY, J. Y. KAZAKIA anp P. A.BLYTHE

When the flow domain is that bounded by two coaxial cylinders of outer radius @, and inner
radius ay, y and v are still given by (10.4) but now Hy; = 7(a§ — a3).

10.3. Incompressible flows between flexible boundaries

The hydraulic shear flows described in §§ 6 and 10.1 are contained between rigid boundaries. A
simple example of a flow adjacent to flexible boundaries that can also be treated by our approach
is the incompressible flow between two flexible surfaces that prior to the arrival of the disturbance
are parallel planes. During the passage of any disturbance the vertical displacements of these
boundaries are known functions of the pressure at the boundaries. If (x, #) are the distance
measure and component of fluid velocity in the direction of propagation of the disturbance and
if (z, w) are the distance measure and component of fluid velocity normal to the undisturbed
boundaries the equations governing such flows are

@g Ou ou 10

at+ua—x+w&+;5;=0 (10.5)
ou  Ow
and &4‘62 = 0. (106)
LLLLL Z LLLLLL Y4
2Hy
NN\ N NN NN NN NN
Ficure 16. Shear profile for the flow in a circular duct for which the analyses in §§4-9 are directly applicable.
In addition, p = polx,0). (10.7)
These are to be solved subject to the condition that on the lower boundary
0zy 0z
z = zy(x,8), w= —57°+u—a-f, (10.8)
. 0z, 0z,
while on the upper boundary  z = z(x,¢), w = T (10.9)
In (10.8) and (10.9), z, and z, are related to p, by the wall equations
zy = ho(po) and zy = hy(po). (10.10)
These can be used to determine a relation between p, and
H=2z-z, (10.11)
the width of the fluid layer. This relation is written
bo = pG(H). (10.12)
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The reduction of the system of equations (10.5)—-(10.12) to the canonical form (2.1)—(2.4) is
achieved by the transformations

_ Dy 0zy 0z, ’
Yy =2z—2zy(x,t) and =P =¥ (at +u E)x)' (10.13)
Now, though, in (2.1) g=G'(H). (10.14)

The result follows by straightforward manipulations.
It should be noted that even when g varies with A, asin (10.14), all of the equations in §§2—4 are
unchanged. However, some minor changes in some of the constants in §§ 5-9 must be made.
When the flow is axi-symmetric and is contained between two flexible surfaces whose boun-
daries at any axial distance x are concentric circles whose radii vary in a known way with p,(x, )
the governing equations are (10.1) and (10.2). These are to be solved subject to the conditions
that on the inner wall

oa 0a
a =a0(x,t), w =—6_tg+u6_x0 (10.15)
. Oa,  Oay
while on the outer wall a=a(x,t), w= o T (10.16)
In addition, the wall equations
ao = ho(po) and &y = hy(po) (10.17)

are known.
In terms of the variables

2
y=n(ad—a?), v= gg “[agt +u6a1 2aw] (10.18)
and H = n[K(po) —ki(£0)] (10.19)
equations (10.1), (10.2), (10.15) and (10.16) are transformed into the set (2.1)-(2.4). Now,
g=G'(H) (10.20)
where the relation po = pG(H) (10.21).

is determined from (10.19). Note the special case when %, = 0. Then the equations describe
hydraulic shear flow in a flexible tube.

10.4. Compressible, isentropic shear flows between flexible boundaries

Even when the fluid in the problems described in section (10.2) is compressible, the governing
equations can still be transformed into the set (2.1)-(2.4) if the flow is isentropic. For example, in
the problem governing the flow between almost plane flexible boundaries the only equation that
is changed in the set (10.5)-(10.10) is (10.6) which must be replaced by the equation

o, Op Ou  Ow
%3 +’0(E)x+az) 0 (10-22)

In addition, the equation of state for isentropic flow can be written
p = p(po)- (10.23)
The required transformations in this case are

_ _Dy _ 0z, 0Oz, o  Op
y=p(z—2z,) and v=g, = p[ (at +Hus )]+(z—zo),[at+ua, (10.24)-

29 Vol. 287. A.
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Also, H = p(po) [11(po) = ho(p0)]- (10.25)
In terms of (x, y, %, v) and H the governing equations reduce to the set (2.1)-(2.4) but with
1dp,
=Sl (10.26)

This can be determined as a function of / by using (10.23) and (10.25).
For the special case of compressible shear flow between rigid plates separated by a distance d

zy=0 and z, =d. (10.27)
Then, according to equations (10.24)-(10.26),

D 0 0
y=pz, v= Dg pw +z(a’?+ua—p> (10.28)

H=pd and g= (pd)~dp,/dp.
must be modified to read y = np(di—a?), v=Dy/Dt

and H = np(po)[13(po) — (o)1
g is still given by (10.26) but with p(H) determined from (10.31).

( )
For compressible axi-symmetric flows between flexible walls equations (10.18) and (10.19)
( )
(10.31)

10.5. Long gravity waves in a barotropic atmosphere

Another, rather more complicated, class of flows for which the governing equations reduce to
the canonical set (2.1)~(2.4) occur in a barotropic, homentropic (well mixed) atmosphere during
the passage of horizontally travelling gravity waves that, to a good approximation, leave the
atmosphere in hydrostatic balance during their passage. If x denotes the horizontal distance
measure in the direction of travel, and if zis the vertical distance measure the governing equations

are
Ou Ou Ou 10p .
TR TR i (10.32)
10p
op Op Op Ou  ow\
and a—t+ua—x+w$+p(a+éz) = 0. (10.34)
In addition, if i =1(p) (10.35)

denotes the enthalpy of the atmospheric gas (the entropy is uniform),
p~t = di/dp. (10.36)

We consider the situation when the flow region is bounded below by a rigid boundary z = 0
and above by a free surface, z = D(x, ), on which the pressure, p,, is constant. Consequently,
equations (10.32)—(10.34) are to be solved subject to the conditions that

w=0 on z=0 (10.37)
while p=pp and w= %?+u% on z=D(xt). (10.38)
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To transform the above equations to the canonical form (2.1)-(2.4) use (%, £) and

Yy=po—p (10.39)

as independent variables where p,(x, t) denotes the pressure on z = 0. As dependent variables use
“ v=Dy/Dt and H(x,{) = py—pa (10.40)
(y,v) are the well-known sigma variables that are often used by meteorologists (see Phillips 1957).
In terms of these variables it can be shown by direct computation that equations (10.32)—(10.34)
and the boundary conditions (10.37) and (10.38) transform into the set (2.1)~(2.4) but with

g=i(ps+H) (10.41)
in these latter equations. In terms of the canonical variables,

p=pa+H-y
and Gz=1i(ps+H)—i(ps+H-y). (10.42)

In particular, the depth D of the fluid layer is given in terms of H by
ED =i(ps+H) —i(pa)- (10.43)

In (10.33), (10.42) and (10.43) g denotes the gravity constant.
For isentropic flows of a polytropic gas we can write

. Y Pow ( p )()’*1)/7 0%
{=—t_lo=( L , =—Y—RT, 10.44

Y= lpoeo Dow Y- 1 ( )
where ., and p,., are the pressure and density at the ground ahead of the wave. It then follows
from (10.36) and (10.44) that the ground density p, and the ground temperature 7; are given in
terms of the ground pressure p, by the relations

1 (y—1)
H is given in terms of p, by (10.40). Off the ground
I(y—1) 1/(y—1)
p=po[1—§]w ; p=po[1—§] " and T=T0[1—§], (10.46)
Y Pow (1,0 )(y—l)/y ([)0 )(y—l‘/v
h A(x,1) = ———2 1 22 , =\ Ao 10.47
whete (1) Y = 18P0 \ pow Do ( )

Note that equations (10.45)—(10.47) imply that we can write
T = Ty(x, 1) — Tyo /e (10.48)

so that, no matter how large the amplitude of the disturbance, in a well-mixed isentropic atmo-
sphere the lapse rate, 7y,,/4,, remains constant. This approximation can only be used below the
tropopause which is typically around 10 km high. The scale height of the atmosphere, 4, is
typically 28 km.

Some of the work reported in this paper was done while one of the authors (E.V.) was
on sabbatical leave at the Department of Applied Mathematics and Theoretical Physics at
29-2
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APPENDIX A

To analyse all three families of waves it is convenient to work with the normalized variables

w » w w?
A=—(u—¢), B=—=(uy—c¢), C=-¢ and D=—H. Al
2 (1—0) 2 (%) 2 z (A1)
In terms of these equations (5.3) and (5.4) read
d4 dCc | dB dC . .
d—D+d—D—+A =0, a—D—-i-E-D—-i-B =0 (A 2)

and (4—B)% = B(42-D). (A 3)
When C and D are eliminated (A 2) and (A 3) yield the first order nonlinear equation o

dB  BA+24BB—A)+2B(B—A)*
dd~ " B+ (4A+B)(A—B)?

(A4)
The solutions to this are best described by introducing the parameter 7 through the relation
4 =1B. (A 5)

When this expression for 4 is inserted (A 4) yields the equation
dB B Br(2r—3)—2(t—1)2

I~ 1) Brer—1)—(=1)° (A 6)

for B(r). (A 3) and (A 5) then imply that
D = B*%—(1—1)%B. (A7)
Also, from (5.2) d = whfg = (1—1) B. (A 8)

Equations (A 5)—(A 8) determine 4, B, D and d as functions of the parameter 7. To obtain an
equation for C use (A 6), (A 7) and the second of equations (A 2) to obtain the equation
dc _ B 3Br+(7+2)(r—1)2

e O = g g g (A9)

The integral curves of (A 6) are shown schematically in figure A 1. There are two singular

points Sy (B,7) = (0,1) and Sy (B,7) = (Z —}). (A 10)
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Since S, lies in the region where D < 0 it is of no interest here since we assume that » > 0. Sy,
though, is the central point of the diagram. All acceptable integral curves corresponding to
forward and backward waves pass through this point where

A=B=D=d=0. : (A 11)
One of these curves is the hyperbola 7(1-B) =1, _ (A 12)

which is the exact solution discussed by Blythe ez al. (1972). Along this curve d = D so that the
whole flow region is one of constant shear. Another integral curve is

T =1, (A 13)

A= \  backward .

Ficurke A 1. The integral curves of equation A 6 for the backward, forward and slow waves.
At the broken curve dB[dT = 0.

Along this curve d = 0so that the fluid is not sheared. All other acceptable curves lie between the
curves (A 12) and (A 13). These curves are conveniently parameterized by
A =dB/dr at ;. ) (A 14)
In the vicinity of this point ‘
B=2A1—1)+(8—4A) (1—1)2+ ... (A 15)
The integral curve (A 12) corresponds to A = 1, the integral curve (A 13) correspondsto A = co.
For the backward wave 7 > 1, for the forward wave 7 < 1. At the broken curve in figure A 1

dB/dr = 0.

Figures A 2-A 4 show typical variations of B and C with D in the forward and backward waves.
At the broken curve dB/dH = 0. "

The integral curves for the slow waves occupy the quadrant where (7, B) < 0 in figure A 1.
Each curve intersects the axis 7 = 0 at a distinct value of B, = — A say, and as 7 - — 00 asymptotes
to the axis B = 0. The parameter /1 can take any value in the range'-[O, o0]. Note that according to

(A 5), (A7) and (A 8) at 7=0, d=D=—-B=A." ~ (A 16)

A study of (A 6) and (A 8) shows that — B and d decrease monotonically from A at 7 = 0 to zero
at T = —o0. Thus, 4 is the maximum value these variables can take in the wave. (A 6) and (A 7)
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2_.
B A=
B D=B? =
8.0 ="
1+ 5.54‘/”/
A=10 T T T T
— B?
| b 1-B
| | | [ | J
0 2 4 D 6

FIGURE A 2. Variations in B with D in the backward wave. Along the broken curve dB[dD = 0.

I I | [ |
0 1 2 3 4 h 45

Ficure A 3. Variations in B with D in the forward wave.

8 .
A=
A=10 ,
6l C-C,=3D}
41— forward
ol
& 2 4 D 6
9 . | | | | | |
S | | | ] I |
—9
backward
—4
A=®0
-6~ C-C~=-3D?
10
_..8 L~

FIGURE A 4. Variations of C with D in forward and backward waves.
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imply that D increases monotonically from A at 7 = 0 to some finite value at 7 = —co. Thus, 4 is
the minimum value of D that can occur in the wave. Note that 4, the height of the interface
separating the sheared and unsheared fluid, can vary over the full range 0 < d < D as D varies
over a finite range. This is also true for the critical level . which, according to (4.1) and (A 1) is

given by w%clg = — B. (A 17)

055

i C—C g

0.2

6 0
103(D — A)

Ficure A 5. Typical variations of (w?fg) [y., #] = [—B, d] with D in the slow waves.
critical level; - — —, the height of the interface separating sheared and unsheared flow.

, The height of the

Ficure A 6. Typical variations of C with D in slow waves.

Figures A 5 and A 6 show typical variations of w?[g = — B(D), w*hfg = d(D) and C(D) as D
varies over its maximum range. C, is the value of C at 7 = 0. Note that C is not a monotonic
function of D as it is for the forward and backward waves. Also, the amplitude dispersion fre-
quency dC/dD is unbounded when D attains its maximum value. When this occurs the critical
height and the dividing interface are at ground level.

The internal waves discussed in section 4 are obtained in the limit as 4 - 0. Then,

since |B| <A forall —c0o<7<0 (A 18)

equation (A 6) implies that the dominant uniformly valid approximation to B(7) satisfies the
equation dB B

"CF+2;_—:—1=0. (A 19)

Also, from (A 9), the dominant uniformly valid approximation to C(7) satisfies the equation

¢ _(1+2) p_
- nB=" (A 20)
These integrate to give
B=—-A(r=1)"2 and C-Cy,=[(t—1)" +3(7—1)"2-1]4. (A 21)
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Since (A 7) and (A 8) imply that

r=hlH=d[D>—(1—1)"1 as A-0,
the dominant approximations to B and C can be written

B=—-4r* and C-Cy=[3?—-r-1}]A.
Also, it follows from (A 5), (A 22) and (A 23) that

A=[r—-rA.
Finally, if the expression (A 7) for D is written
D=—(r— 1)23[1-3(%)2]

T —
it follows from (A 21) and (A 6) that
D =A[1+0(A4)]

and then from (A 22) that d=Ar[1+0(A4)] as A->0.

(A 22)

(A 23)

(A 24)

(A 25)

(A 26)
(A 27)

Thus, as r varies over the full range [0, 1] as 7 varies over the range [ — 00, 0] d varies over the full
range [0, A] although D does not change perceptibly from A. When the expressions (A 24),
(A 25), (A 26) and (A 27) are written in dimensional variables they imply the relations (5.4)-
(5.5). To obtain the O(A2) correction to H given by (5.6) equation (A 6) must be used to obtain

B to O(A2) and (A 7) and (A 8) to obtain B and d to 0(A2).
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